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Abstract:
Introduction: It is well known that the periodic properties of solutions play
a key role in characterizing the behavior of solutions of nonlinear differential
equations. With reference to our observation in the relevant literature, work
on the periodic properties of solutions for certain autonomous third-order non-
linear differential equations are very scarce.
Aims: In this work, we establish sufficient conditions that ensure the ex-
istence of periodic (or almost periodic) solutions of this class of differential
equations.
Materials and Methods: The Lyapunov’s second or direct method, a com-
plete Lyapunov function was constructed and used to obtain our results.
Results: Sufficient Conditions were obtained for the existence of periodic
and almost periodic solutions for certain autonomous third-order nonlinear
differential equation.
Conclusion: The results extend and improve on some earlier results in the
literature.
Keywords: Periodic solutions, Almost periodic solutions; Third order nonlin-
ear differential equations, Lyapunov’s method.
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1 INTRODUCTION

This paper considers the periodic or almost periodic solutions
of the autonomous third-order differential equation

...
x +φ(x, ẋ)ẍ+ g(ẋ) + h(x) = p(t, x, ẋ, ẍ), (1)

in which φ, g, h and p depend on the arguments displayed ex-
plicitly and dots denote differentiation with respect to t. More-
over, the existence and the uniqueness of solutions of (1) will
be assumed.
Equations of the form (1) do arise in some aspect of applied
sciences such as after effect, nonlinear oscillations, biological
systems and equations with deviating arguments (see [1], [2]
and [3]) and an effective method for studying the qualitative
properties of solutions of such nonlinear equations is still the
Lyapunov’s direct method (see [4], [5], [6], [7], [8], [9], [10],
[11], [12]). Many of these results on stability, boundedness,
convergence of solutions exist for more general or special
cases of (1) and are summarized in [13]. The search for peri-
odic solutions and the examination of their behavior is of inter-
est because of the mathematical description of nonlinear sys-
tems and the determination of periodic regime of real physical
systems modeled into nonlinear differential equations. The
periodic properties of solutions for some kind of nonlinear
third-order scalar differential equations has been addressed
by only a few, for example Andres [14], Ezeilo [15], Ezeilo
[16], Ezeilo and Nkashama [17], Ogbu [18], Pliss [19] and
Villari [20]. However, the methods employed by [14, 15, 16,
17, 18, 19] and [20] were based on fixed point theorems, the
Brouwer fixed-point theorem and the Lerray-Schauder fixed
point theorem also referred to as the ”non-Routh Hurwitz” di-
rection in proving the existence of periodic solutions of third-
order differential equations.
In this work, we consider a somewhat different approach to
”non-Routh Hurwitz” direction in establishing the existence
of periodic or almost periodic solutions of equation (1) if p is
periodic or almost periodic due to the presence of the pertur-
bation r. To the best of our knowledge, results in the direction
of Routh-Hurwitz do not exist ! The problem, however, in us-
ing the Lyapunov method approach to establish the existence
of periodic solutions is the difficulty in constructing a suitable
complete Lyapunov function (see [4]). Our results will be in
the direction of Routh Hurwitz and may be applied to the spa-
tial discretion of some third-order differential equations (see
[21]).

2 MATERIAL AND METHODS

2.1 Definitions

Definition 2.1 A continuous function f : R → x is called al-
most periodic if for each ε > 0 there exists ℓ(ε) > 0 such that
every interval of length ℓ(ε) contains a number τ with property

that

|f(t+ τ)− f(t)| < ε for each t ∈ R.

Definition 2.2 A continuous function f : R → x is said to be
periodic with period ω for all t ∈ R such that

f(t+ ω) = f(t) for all t ∈ R.

Assume now that r is the perturbation such that p is con-
tinuous function p(t, x, ẋ, ẍ) is separable in the form

p(t, x, ẋ, ẍ) = q(t) + r(t, x, ẋ, ẍ),

with q(t)+r(t, 0, 0, 0) continuous in their respective arguments,
where

|q(t)| =
∫ t

0

|q(s)| ≤ D1, D1 > 0.

Our main result is the following

2.2 Main result

Theorem 2.3 Further to the basic assumptions imposed on
the functions φ, g, h and p in equation (1). We also assume
that a, b, c, δo are positive constants and h(0) = 0, then the
following conditions hold:

(i) φ(x, y) > a, g(y)
y ≥ b, hx(x) ≤ c and ab − c > 0 for all

x, y, z;

(ii) h(x)
x ≥ δo, for all x ̸= 0 ;

(iii) yφx(x, y) ≤ 0, for all x,y;

(iv) p(t, x, y, z) ≡ q(t) + r(t, x, y, z) satisfies

|r(t, x1, y1, z1 + q)− r(t, x2, y2, z2 + q)| ≤
ϕ{|x1 − x2|+ |y1 − y2|+ |z1 − z2|}.

for arbitrary t and x1, x2, y1, y2, z1, z2 ∈ R, with ϕ(t) a contin-
uous function satisfying∫ ∞

−∞
ϕγ(t)dt <∞,

for some constant γ in the range 1 ≤ γ ≤ 2. Suppose further
that there exists a solution x(t) of equation (1) such that

|x(t)|2 + |ẋ(t)|2 + |ẍ(t)|2 ≤ D2.

Then,

1. If q(t) is almost periodic and r(t, x, ẋ, ẍ) is almost periodic
in t, for |x(t)|2+|ẋ(t)|2+|ẍ(t)|2 ≤ D2, then x(t) is almost
periodic in t.
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2. If q(t) and r(t, x, ẋ, ẍ) are periodic in t, with period ω, for
|x(t)|2+ |ẋ(t)|2+ |ẍ(t)|2 ≤ D2, then x(t) is periodic with
period ω.

Now, let equation (1) be replaced with the equivalent sys-
tem

ẋ = y,

ẏ = z + q,

ż = −φ(x, y)z − g(y)− h(x) + p(t, x, y, z + q)

− φ(x, y)q. (2)

2.3 Preliminary results

Let (x, y, z) be any solution of system (2). Our main tool is
the following scalar function, defined by

V = V1 + V2, (3)

where V1 and V2 are given by

2V1 = 2

∫ x

0

h(ξ)dξ + 2

∫ y

0

φ(x, σ)dσ + 2α

∫ y

0

g(σ)dσ

+ αz2 + 2yz + 2αyh(x)

and

2V2 = βℓbx2 + 2a

∫ x

0

h(ξ)dξ + 2a

∫ y

0

φ(x, σ)dσ

+ 2α

∫ y

0

g(σ)dσ + z2 + 2βℓxy + 2ayz

+ 2yh(x) + 2βℓxz,

α > 0 is a fixed constant chosen such that

1

a
< α <

b

c
(4)

and 0 < β < 1 chosen such that

β < min
{

ab− c

ℓ

[
a+ δ−1

o

(
g(y)
y − b

)2] , 1a,
aα− 1

abα
,

δo(aα− 1)

ℓ[φ(x, y)− a]2

}
. (5)

The function V can be re-arranged as follows:

2V1 =

{
2

∫ x

0

h(ξ)dξ − α

b
h2(x)

}
+ αb

{
y +

h(x)

b

}2

+ {2
∫ y

0

φ(x, σ)dσ − α−1y2}+ α{z + α−1y}2

+ α{
∫ y

0

g(σ)dσ − by2}

and

2V2 = βℓ(b− βℓ)x2 + a{2
∫ x

0

h(ξ)dξ − ℓ−1h2(x)}

+ ℓ{a 1
2 y + ℓ−1a−

1
2h(x)}2 + {2

∫ y

0

g(σ)dσ − ℓa−1y2}

+ a{
∫ y

0

φ(x, σ)dσ − ay2}+ {βℓx+ ay + z}2.

The term

2

∫ x

0

h(ξ)dξ − α

b
h2(x),

in the re-arrangement of 2V1 becomes

2

∫ x

0

(1− α

b
hξ(ξ))h(ξ)dξ −

α

b
h2(0),

using the hypotheses (i) and (ii) of Theorem 1, we get

2

∫ x

0

h(ξ)dξ − α

b
h2(x) ≥

(
1− α

b
c

)
δox

2.

Similarly, the term

2

∫ x

0

h(ξ)dξ − ℓ−1h2(x),

in the re-arrangement of 2V2 becomes

2

∫ x

0

h(ξ)dξ − ℓ−1h2(x) ≥
(
1− c

ℓ

)
δox

2.

Combining these estimates, we obtain for

V ≥
{(

1− α

b
c

)
δo + βℓ(b− βℓ) +

(
1− c

ℓ

)
δo

}
x2

+

{(
a− 1

α
− βℓ

)
+

(
b− ℓ

a

)}
y2

+ α

(
z +

1

α
y

)2

+ (βℓx+ ay + z)2,

where α, β satisfy (4) and (5) if we chose ℓ = ab.
Thus, there exists a constant δ1 small enough such that

V ≥ δ1(x
2 + y2 + z2),

where

δ1 = min
{
(1− α

b
c)δo + βℓ(b− βℓ) + (1− c

ℓ
)δo; (a−

1

α
− βℓ)

+ (b− ℓ

a
); (α+ 1)

}
.

Also, from (3) and by Schwartz’s inequality, we have

V ≤ δ2(x
2 + y2 + z2),
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where

δ2 = max
{
1+a+δo(1+α)+β(2+b); 2+a(a+2)+α(b+1)+βℓ+b;

α+ 2 + a+ βℓ

}
.

Hence, V is positive definite and satisfies

δ1(x
2 + y2 + z2) ≤ V ≤ δ2(x

2 + y2 + z2). (6)

Furthermore, along any solution (x(t), y(t), z(t)) of (2), we
have

d

dt
V (x, y, z) = V̇

given by

V̇ = (1 + a)y

∫ y

0

φx(x, σ)dσ + (1 + α)hx(x)y
2

− (1 + a)
g(y)

y
y2

− [φ(x, y)− a]z2 − αφ(x, y)z2 − βℓ

{
g(y)

y
− b

}
xy + z2

− βℓ
h(x)

x
x2 − βℓ[φ(x, y)− a]xz + aβℓy2

(1 ++ α)
h(x)

x
xq(t) +

{
(1 + α)

g(y)

y
y − βℓy

}
q(t)

+ (1− αa)zq(t)

+ [βℓx+ (1 + a)y + (1 + α)z]r(t, x, y, z + q).

By the hypotheses of the Theorem, we have

V̇ ≤ (1 + α)cy2 − (1 + a)by2 − αaz2 + z2

− βℓ

{
g(y)

y
− b

}
xy

− βℓ[φ(x, y)− a]xz + βℓδox
2 + aβℓy2 − az2

[(1 ++ α)δox+ (b(1 + α)− βℓ)y + (1− αa)z]q(t)

[+ βℓx+ (1 + a)y + (1 + α)z]r(t, x, y, z + q).

It is obvious that

V̇ = − 1

2
βℓδox

2 −
[
ab− c− βℓ

(
a+ δ−1

o

(
g(y)

y
− b

)2]
y2

− (b− αc)y2 − [aα− 1− βℓδ−1
o (φ(x, y)− a)2]z2 − az2

− 1

4
βℓδo

[
x+ 2δ−1

o

(
g(y)

y
− b

)
y

]2
− 1

4
βℓδo[x+ 2υ−1(φ(x, y)− a)z]2

+ [(1 + α)δox+ (b(1 + α)− βℓ)y + (1− αa)z]q(t)

+ [βℓx+ (1 + a)y + (1 + α)z]r(t, x, y, z + q).

If β satisfies (5), we have that

V̇ ≤ − 1

2
βℓδox

2 − (b− αc)y2 − az2

+ [(1 + α)δox+ (b(1 + α)− βℓ)y + (1− αa)z]q(t)

+ [βℓx+ (1 + a)y + (1 + α)z]r(t, x, y, z + q).

It follows that

V̇ ≤ − δ3(x
2 + y2 + z2) + δ4(x

2 + y2 + z2)
1
2

+ δ5(x
2 + y2 + z2)

1
2 |r(t, x, y, z + q)|,

where

δ3 = min 1

2
{βℓδo, 2(b− αc), 2a},

δ4 = max
√
3D1{δo(1 + α), b(1 + α)− βℓ, 1− αa},

and

δ4 = max
√
3{βℓ, 1 + a, 1 + α}.

Thus,

V̇ ≤ − δ3(x
2 + y2 + z2)

+ δ6(x
2 + y2 + z2)

1
2 [r(t, x, y, z + q) + 1],

where

δ6 = max{δ4, δ5}.

So that since

|r(t, x, y, z + q)| ≤ δ6ϕ(t)[(x
2 + y2 + z2)

1
2 + 1],

V̇ −≤ δ3(x
2 + y2 + z2) + δ6ϕ(t)(x

2 + y2 + z2)

+ δ6ϕ(t)(x
2 + y2 + z2)

1
2 .

By (iv) of Theorem 1 and (6), we have

V̇ ≤ − (δ7 − δ8ϕ(t))V + δ9V
1
2 ,

where δ7 = δ3
δ2
, δ8 = δ5

δ1
δ9 = δ4

δ1
.

Following the argument used in [5] it can be further verified
that

V̇ ≤ − δ10(x
2 + y2 + z2) + δ11ϕ(t)(x

2 + y2 + z2)
1
2 |θ|,(7)

where θ = r(t, x1, y1, z1 + q) − r(t, x2, y2, z2 + q) and δ10, δ11
are finite constants.

3 RESULTS

3.1 Proof of Theorem 1

Consider the function

U(t) = V
(
x(t− τ)− x(t), y(t− τ)− y(t), z(t− τ)− z(t)

)
(8)
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where V is the function defined in (3) with x, y, z replaced by
(x(t+ τ)−x(t)), (y(t+ τ)−y(t)) and (z(t+ τ)− z(t)) -respec
tively. Then, by (6) we have positive constants D3 and D4

such that

D3S(t) ≤ U(t) ≤ D4S(t), (9)

where

S(t) = {|x(t+ τ)− x(t)|2 + |y(t+ τ)− y(t)|2 + |z(t+ τ)− z(t)|2}.

Differentiating U(t) along the system (2), we get as in (7),

U̇(t) ≤ −δ10
{
|x(t+ τ)− x(t)|2 + |y(t+ τ)− y(t)|2

+ |z(t+ τ)− z(t)|2
}

+ δ11
{
|x(t+ τ)− x(t)|2 + |y(t+ τ)− y(t)|2

+ |z(t+ τ)− z(t)|2
} 1

2 |θ|, (10)

where θ = r((t+ τ), x(t), y(t), z(t) + q(t+ τ)− r(t, x, y, z+ q)
with δ10 and δ11 being finite constants.
Inequality (10) can be arranged as

U̇(t) ≤ −δ10
{
|x(t+ τ)− x(t)|2 + |y(t+ τ)− y(t)|2

+ |z(t+ τ)− z(t)|2
}

+ δ12
{
|x(t+ τ)− x(t)|2 + |y(t+ τ)− y(t)|2

+ |z(t+ τ)− z(t)|2
} 1

2 |θ|
+ δ13

{
|x(t+ τ)− x(t)|2 + |y(t+ τ)− y(t)|2

+ |z(t+ τ)− z(t)|2
} 1

2

× |r(t+ τ), x(t), y(t), z(t) + q(t+ τ)− r(t, x(t), y(t), z + q)|(11)

Since the perturbation r is uniformly almost periodic in t. Then,
given arbitrary ε > 0, we can find τ > 0 such that |q(t+ τ)−
q(t)| ≤ ℓε2,

|r(t+ τ), x(t), y(t), z(t) + q(t+ τ)− r(t, x(t), y(t), z + q)| ≤ ℓε2 (12)

where ℓ is a constant whose value will be determined later.
Thus, (11) becomes

U̇(t) ≤ −δ10S(t) + δ12S
1
2 |θ|+ δ13S

1
2 (t)ℓε2 (13)

By (iv) of Theorem 1,{
|x(t+τ)−x(t)|2+|y(t+τ)−y(t)|2+|z(t+τ)−z(t)|2

} 1
2 ≤ D2

(13) becomes,

U̇(t) + δ10S(t) ≤ δ
1
2
12|θ|+ δ13D2ℓε

2. (14)

Let γ be any constant such that 1 ≤ γ ≤ 2 and setm = 1− 1
2γ,

so that 0 ≤ m ≤ 1
2 .

Then, (14) becomes

U̇ + δ10S(t) ≤ δ12S
mU∗ + δ13D2ℓε

2 (15)

and U∗ = S( 1
2−m)(|θ| − δ10δ

−1
12 S

1
2 (t)).

We consider two cases

(i) |θ| ≤ δ10δ
−1
12 S

1
2 and

(ii) |θ| > δ10δ
−1
12 S

1
2

separately, we find that in either case, there exists some con-
stants δ14 > 0 such that U∗ ≤ δ14|θ|2(1−m). Thus, (15) be-
comes

dU

dt
+ δ10S ≤ δ15S

mϕ2(1−m)S(1−m)U(t) + δ13D2ℓε
2

where δ15 ≥ 2δ12δ14. Using (9) on U , we obtain

dU

dt
+

(
(δ16 − δ17)ϕ

γ(t)
)
U(t) ≤ δ13D2ℓε

2 (16)

where δ16, δ17 as positive constants.
On integrating (16) from to to t (t ≥ to), we obtain

W (t) ≤ δ18U(t1)exp
{
− δ16(t− to)

}
+ δ17

∫ t

to

ϕγ(s)d(s)
}

+ δ19ℓε
2, (17)

where δ18 = δ12
δ10

and δ19 = δ18δ13D2

δ16
.

If ∫ t

to

ϕγ(s)d(s) < δ16δ
−1
17 (t− to),

then, the exponential index remains negative for all (t− to) ≥
0. As t = (t−to) → ∞ and that U(to) is finite in (17), we have
that

U(t) ≤ δ19ℓε
2 for any t.

Since U(t) satisfies (9), we get

U(t) ≤ D−1
3 δ19ℓε

2.

Also, by (9), we have that

|x(t+ τ)− x(t)|+ |y(t+ τ)− y(t)|+ |z(t+ τ)− z(t)| ≤(
3ℓδ19
D3

) 1
2

ε. (18)

Choosing ℓ = D3

3δ19
in (18), we have

|x(t+ τ)− x(t)|+ |y(t+ τ)− y(t)|+ |z(t+ τ)− z(t)| ≤ ε, (19)

where τ is chosen to satisfy (12) is relatively dense and hence
(19) implies that the solutions (x(t), y(t), z(t)) or equivalently
x(t), ẋ(t), ẍ(t) of (1) are uniformly almost periodic in t.
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To show that the solutions are also periodic, we assume
that

q(t+ ω =) q(t)

r(t+ ω, x(t), y(t), z(t) + q(t =)) r(t, x(t), y(t), z(t)),

for (x2 + y2 + z2) ≤ D2.

Since the perturbation r(t, x, y, z+q) has period ω in t, we
replace τ in the definition of U(t) with ω. The terms in the
left hand side of (12) is identically zero, thus we may have
inequality (19) as

|x(t+ ω)− x(t)|+ |y(t+ ω)− y(t)|+ |z(t+ ω)− z(t)| ≤ 0.

Thus,

|x(t+ ω)− x(t)|+ |y(t+ ω)− y(t)|+ |z(t+ ω)− z(t)| = 0.

which implies that

x(t+ ω) = x(t) and y(t+ ω) = y(t) z(t+ ω) = z(t)

That is, x(t), y(t), z(t) are periodic in t with period ω.

4 CONCLUSION

Analysis of nonlinear systems literary shows that Lyapunov’s
theory in Periodic properties of solutions is rarely scarce. The
second Lyapunov’s method allows to predict the periodic be-
havior of solutions of sufficiently complicated nonlinear phys-
ical system. The solutions of third-order autonomous differ-
ential equation (1) are periodic and almost periodic uniformly
in x, ẋ and ẍ according to Lyapunov’s theory if (4) and (5)
hold as t→ ∞.
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